Monads of Effective Descent Type and Comonadicity
نویسنده
چکیده
We show, for an arbitrary adjunction F U : B → A with B Cauchy complete, that the functor F is comonadic if and only if the monad T on A induced by the adjunction is of effective descent type, meaning that the free T-algebra functor F : A → AT is comonadic. This result is applied to several situations: In Section 4 to give a sufficient condition for an exponential functor on a cartesian closed category to be monadic, in Sections 5 and 6 to settle the question of the comonadicity of those functors whose domain is Set, or Set , or the category of modules over a semisimple ring, in Section 7 to study the effectiveness of (co)monads on module categories. Our final application is a descent theorem for noncommutative rings from which we deduce an important result of A. Joyal and M. Tierney and of J.-P. Olivier, asserting that the effective descent morphisms in the opposite of the category of commutative unital rings are precisely the pure monomorphisms.
منابع مشابه
On descent for coalgebras and type transformations
We find a criterion for a morphism of coalgebras over a Barr-exact category to be effective descent and determine (effective) descent morphisms for coalgebras over toposes in some cases. Also, we study some exactness properties of endofunctors of arbitrary categories in connection with natural transformations between them as well as those of functors that these transformations induce between co...
متن کاملDescent for Monads
Motivated by a desire to gain a better understanding of the “dimensionby-dimension” decompositions of certain prominent monads in higher category theory, we investigate descent theory for endofunctors and monads. After setting up a basic framework of indexed monoidal categories, we describe a suitable subcategory of Cat over which we can view the assignment C 7→ Mnd(C) as an indexed category; o...
متن کاملLeibniz’s Monads and Mulla Sadra’s Hierarchy of Being: A Comparative Study
Mulla Sadra and Leibniz, the two philosophers from the East and the West, belong to two different worlds. Though they were unaware of the ideas of each other, their philosophical systems share certain common points that are comparable. Monads constitute the basis of Leibniz's thought and he refers to their features in his various works. On the other side, Mulla Sadra's philosophy is also based ...
متن کاملFibrewise injectivity and Kock-Zöberlein monads
Using Escardó-Flagg approach to injectivity via Kock-Zöberlein monads in T0 topological spaces [3], and Hofmann’s recent study of injectivity for spaces [4], we characterize continuous maps which are injective with respect to special classes of embeddings using convergence: see [1]. In fact, convergence has been shown to be very useful in the characterization of special classes of maps, like ef...
متن کاملApplications of the Kleisli and Eilenberg-Moore 2-adjunctions
In 2010, J. Climent Vidal and J. Soliveres Tur developed, among other things, a pair of 2-adjunctions between the 2-category of adjunctions and the 2-category of monads. One is related to the Kleisli adjunction and the other to the Eilenberg-Moore adjunction for a given monad.Since any 2-adjunction induces certain natural isomorphisms of categories, these can be used to classify bijection...
متن کامل